
1

Using a Fisheye View to Visualize Change-Over-Time in

Support of Digital Forensic Examinations

Timothy R. Leschke Penny Rheingans Alan T. Sherman

 Timothy.Leschke@ManTech.com Rheingan@umbc.edu Sherman@umbc.edu

 Timothy.Leschke.ctr@dc3.mil

 Tleschk1@umbc.edu

Abstract:

By understanding how digital evidence has changed-over-time, digital forensic examiners are better

able to explain “what happened.” We propose a data visualization technique that supports the

examiner’s understanding of how digital evidence has changed-over-time. By providing a means for the

digital forensic examiner to perceive digital evidence in a visual format, the digital forensic examiner is

able to conduct faster analysis, better comprehend data that has changed, and discover new

relationships among the digital forensic data that were not previously known.

We develop what we call a “segmented box and whisker” visualization icon and apply it in a fisheye

view, which allows the viewer to comprehend the content and context of a directory structure that has

changed-over-time. We explore well known content+context visualization techniques and explain why a

fisheye view is the best choice for displaying directory structure information. We develop a theoretical

thresholding algorithm which reduces the dataset by hiding less important data. We provide a

theoretical solution for dealing with scrolling issues and issues related to maintaining the focal point.

We conclude with a theoretical data visualization technique which enhances one’s ability to explain

“what happened”, which is the primary goal of every digital forensic examination.

1. Introduction:

Time is an illusion that is created by the mind’s response to its perception of a world of continuous

change. Time and change share a common quality that is often expressed as the single concept of

change-over-time. For the digital forensic examiner, being able to understand change-over-time

supports the goal of being able to explain “what happened.” One way to enhance the forensic

examiner’s understanding of change-over-time is to allow him to perceive data visually.

We propose a method for presenting data to a digital forensic examiner such that he can easily

perceive how a directory-tree structure has changed-over-time. Our novel contributions include 1) the

development of a single visual representation which reflects changes to a directory-tree structure over-

time, and 2) the application of the traditional content+context visualization technique, known as a

fisheye view, to the new application domain of directory structure information.

2

1.1 Digital Forensic Data that Records Change-over-Time:

Digital artifacts and applications which maintain different versions of files as they existed at

different points in time are said to record change-over-time. A log-based file system is one example of

an application that provides this functionality. Log-based file systems, such as Sprite, Fossil, ILFS, LogFS,

YAFFS, and others, maintain files in a circular log. When a file is changed, it is copied into memory

before it is changed and written back to the log’s next available (new) location. This process results in

logs containing several versions of files. By comparing the new version of a file to one or more of the old

versions, one can determine what has changed. The number of versions of a file is only limited by the

size of the log and by how frequently the log is recycled.

Another application that maintains data that records change-over-time is the Volume Shadow Copy

Service. Although this service was first introduced in Windows Server 2003, it is perhaps best known for

being part of the Windows Vista and Windows 7 operating systems. This service creates backup copies

of data so the user can restore individual files, or even restore the entire operating system, to the state

that it was in at a previous moment in time. This is useful if the user wants to recover data that was

accidentally deleted or modified.

The test data set that we used to support our visualization research was obtained from a Volume

Shadow Copy Service. We installed Microsoft Office on a computer containing the Ultimate version of

the Microsoft Vista operating system. We wrote a small C# program that traverses the entire directory

tree and exports the meta-data for every directory along its path. This text output includes the name of

the directory and information about each directory’s parent-child relationship. We obtained directory-

tree structure information from multiple time periods by accessing records that are maintained by the

Volume Shadow Copy Service. We ensured there would be several time periods to work with by

creating restore points 1) after installing Vista (but before activation), 2) after activating Vista, 3) after

installing Service Pack 1, 4) after installing Microsoft Office, 5) after activating Microsoft Office, 6) after

creating some user directories, and 7) after deleting some user directories. An eighth restore point was

created automatically during the installation of the service pack. As all of the records were compiled

into one file, the directory parsing tool added “true” and/or “false” values to each directory record to

designate if the directory existed or not during each time period. PsExec was used to elevate the access

rights for our directory parsing tool to system level which allowed us to obtain records for all user,

application, and system directories. Our output file yielded approximately 700,000 directories!

1.2 The Motivation for Data Visualization:

Because more information can be obtained through vision than through all other senses combined,

obtaining information through data visualization presents the greatest bandwidth for human

perception. With data from personal computing environments and digital artifacts surpassing terabyte

levels, the amount of data that is subject to a digital forensic examination has grown to almost

unmanageable levels. One way to keep pace with the growing quantity of digital evidence is to increase

the bandwidth by which digital forensic examiners perceive forensic data. The need for an increased

perceptual bandwidth is one of the primary motivations for applying data visualization techniques to the

domain of digital forensics.

3

Another motivation for applying data visualization techniques to digital forensics is knowledge

discovery [1]. A query can be a very powerful technique, but a query can only be utilized if one knows

exactly what one is looking for. Unfortunately, in the context of a cybercrime investigation, one often

does not know what they are looking for. In this situation, a visualization technique is more useful

because it displays data in a way that unique relationships among the data can be easily seen and

discovered. For example, the digital forensic examiner may benefit by seeing which time-period

contains the greatest amount of change because this time-period might contain the greatest amount of

usable evidence.

A third motivation for utilizing data visualization is its ability to increase productivity by speeding-up

analysis. Testing has shown that software engineers that make use of data visualization techniques have

an increased productivity [1]. We believe an increase in productivity will also be actualized by digital

forensic examiners if they utilize more data visualization techniques.

A fourth motivation for data visualization is its support of better comprehension by the viewer. For

example, consider the use of the Unix diff command for comparing two files [1]. Although all of the

differences between two files are expressed in the diff command’s textual output, this textual output is

not easily comprehended by the user. It is easier for the user to comprehend the differences between

the two files if the diff command’s output is displayed visually [1].

2. Development of the “Segmented Box and Whisker”:

 We have developed a visualization icon called a segmented box and whisker which we use to

represent a file-system directory. The segmented box portion of the icon is a rectangle that is divided

evenly into segments which represent time-periods that are ordered from left to right; from the most-

distant time-period to the most-recent time-period. Each segment is colored either yellow or red

depending on if the directory exists or does not exist during that particular time period.

 The whisker portion of the segmented box and whisker icon is a thin black line that extends to the

left of the segmented box. This whisker is used to denote the parent-child relationship by indenting the

child directory under the parent directory. Figure 1 provides an example of three segmented box and

whisker visualization icons that are used to represent file-system directories that have parent-child

relationships. Figure 1 shows the CountryMusic directory is indented below the MyMusic directory, and

the MyMusic directory is indented below the MyDocuments directory. Using whiskers to express

indentations allows each segmented box to be arranged such that the segments from the same time-

period are ordered in columns. This allows the viewer to easily scan a column and logically associate all

of the directories that exist during a chosen time-period. For example, the far right column in Figure 1

shows that the directories named MyDocuments and MyMusic exist during that time period while the

CountryMusic directory does not.

4

The use of yellow and red to denote the existence and non-existence of a directory is a technique

known as layering information [1]. This technique makes it easy for the viewer to logically focus on one

subset of data over another by concentrating on one color over the other. An additional benefit to

layering information is that it makes it very easy for the viewer to identify where yellow and red

segments border each other. Easily identifying these borders is important because it helps the viewer

identify where change has taken place. Our choice of red to denote the non-existence (or death) of a

directory is culture-based. Other cultures, like China’s, represent good fortune with red, while green

denotes death [13].

The development of the segmented box and whisker marks the completion our first goal, which is to

create a visualization that portrays how a single directory changes over time. Our second goal is to

present this information within the global context of all of the directories within the entire directory

tree. Our second goal is achieved by implementing a segmented box and whisker within a fisheye view.

3. Visualizing Context with a Fisheye View:

 Our objective is to create a single picture that conveys how a directory has changed over time,

while also conveying an understanding of the global context of the directory. Our challenge is in

displaying an enormous data set that contains about 700,000 data points. The amount of computer

screen real estate is the limiting factor. If one assumes that we have access to a high-end monitor (like

one that supports medical imaging, with 4096 x 2160 pixels), we are limited to displaying at most 4,096

items in a column, where each item has the height of just one pixel. We can fit 700,000 items within the

boundaries of this high-end monitor if we arrange the items in a checker-board format and each item is

comprised of about twelve pixels. However, we believe twelve pixels is too small to support a

visualization that is useful for the user. This approach also scatters the icons all over the screen, which

challenges the viewer’s ability to grasp the global context. Therefore, displaying 700,000 icons on the

computer screen at the same time is not a viable option.

 Scrolling [8] is also not acceptable for our needs because it forces the viewer to commit all

previously viewed screen images to memory so that the entire data set can be mentally reconstructed

from its parts, and the specific item can be comprehended within the context of the entire data set. We

believe this approach exceeds the cognitive capacity of the viewer.

Magnification is another approach to viewing items within a global context that is not suitable for

our needs. The two types of magnification to consider are linear and non-linear. Linear magnification is

the type that one experiences when one looks through an ordinary magnifying glass [5]. The challenge

with this approach is that there are two cognitive/perceptual levels which the viewer must mentally tie

Figure 1

5

together [5]. Within the magnified area, the data is presented in greater perceptual detail, whereas the

non-magnified area is presented in less perceptual detail. The difference between these two levels of

perceptual detail makes it difficult for one to mentally map one level of detail to the other.

Furthermore, linear magnification creates an area that appears to float above the non-magnified area

[4]. In addition, the boundary between these two levels of magnification is usually distorted [8]. Finally,

linear magnification usually creates an occlusion, which is the blocking of neighboring areas of the non-

magnified area with the magnified area [5]. Thus, linear magnification leads to some of the data being

lost, which leads to a loss of the global context [11].

In a non-linear magnification, the change from one magnification level to the next is not an abrupt

change as with a linear magnification. The change is more gradual, but it still leads to a distortion. The

distortion is caused by the visualization being stretched between the lower magnification level and the

higher magnification level. There is no true occlusion as with linear magnification. However, the

distortion that is caused by the stretching effect of non-linear magnification behaves just like an

occlusion in that the data is not easily perceived by the viewer.

Another visualization technique that is similar to magnification is panning and zooming, or as some

call it, pan-zoom [3]. Panning over and entire data set allows one access to the global context of the

data, whereas a zoom into a specific subset of the data allows more detail to be understood. A

limitation to the pan-zoom approach is that panning requires a linear transformation whereas zooming

is a logarithmic transformation [3]. Requiring the viewer to comprehend these two scales at the same

time does not support easy perception. Furthermore, pan-zoom can lead to the loss of the overall

structure or global context [12].

 Unlike zooming, the semantic zooming approach allows a data point to change its appearance as

the amount of available screen real estate changes [3]. For example, a page of text could be

represented as a point, then a solid rectangle, and finally a full text page as the amount of room to

display it increases [3]. A similar approach has been implemented for the representation of castles [4].

Semantic zooming is unacceptable for our needs because it allows a data point to change its

appearance, which we believe distorts the information being perceived.

 In our attempt to represent our data set of 700,000 items to the viewer, we have considered

scrolling, linear and non-linear magnification, pan-zoom, and semantic zooming. Each of these

visualization approaches is inadequate for their own reasons. We consider classical focus+context

visualization approaches to help us meet our goal.

3.1 Classical Focus+Context Visualization Approaches:

 In a classical focus+context display, one is allowed to focus on one part of a data set while retaining

the global context provided by the remainder of the data set. This is precisely what we aim to do when

we visualize the change of a particular directory within the context of the entire directory tree structure.

We investigate many classical focus+context display techniques before concluding that the fisheye view

is the best match for our visualization needs.

6

Polyfocal Display:

 Polyfocal display, or polyfocal projection [4], balances the effect of applying a magnification

function to one part of a display by applying a negative magnification [8] function to another part of the

display. This produces areas that appear to vanish from the display. We reject this approach for

visualizing our data set because by causing data to vanish for the display, we believe the global context

is lost, or at least, is severely distorted.

Perspective Wall:

 The perspective wall [9] integrates detail and context as it projects data onto the panels of a three-

faced wall. The middle panel presents a detailed representation of the data of interest. The side panels,

which angel away from the viewer at about forty-five degrees and also appear to extend to infinity,

project the remainder of the data in less detail.

 We reject the perspective wall because the side panels that extend to infinity distort the global

context by visually reducing the distant data points to nothing. We maintain that distorting the global

context of digital forensic data can lead to incorrect analysis, and eventually, incorrect conclusions. We

also reject the perspective wall because it only works with linear data sets [12]. It does not work with

our directory structure data set that extends in both directions like a rectangular array [11].

Bifocal Display:

 Bifocal display arranges the data representations into three vertical strips [12]. A detailed

representation gets displayed when the data point is scrolled into the middle strip, and a distorted

representation gets displayed when the data point is scrolled into one of the two outside strips. Bifocal

display has been called a special case of the perspective wall [8]. We reject the bifocal display, because

like the perspective wall, it too distorts data which can lead to incorrect analysis and incorrect

conclusions.

The Document Lens:

 Document lens displays the data of interest in a rectangular focal point in the middle of the screen,

similar to the perspective wall. But unlike the perspective wall which wastes space by not utilizing the

area above or below the middle panel [8], the document lens utilizes this screen real estate by allowing

the user to scroll up and down as well as right and left. However, the ability to move the rectangular

focal point in four directions is only useful for domains that are rectangular, like text documents. When

viewing text, a technique known as greeking text can be employed to abstract the data that lies outside

the focal point [11]. Greeking text involves the replacing of text with a simple line.

 We reject the document lens for our problem domain because the data that is outside of the

rectangular focal point is distorted, which we want to avoid. We also reject the document lens because

we contend the viewer cannot comprehend the global context of a data set that appears to expand in

four directions.

7

Cone Trees:

 A cone tree is a three-dimensional visualization in which the parent node is represented as the apex

of a cone and the children are positioned in a circle in the plane that makes up the rim of the cone

[9][12]. Cone tree representations are truly three-dimensional in that nodes that are further away from

the center of focus, or what some call the synthetic camera [12], are smaller. Nodes that are closer are

portrayed as larger. Cone trees can be transparent, which helps the viewer see through the objects in

the front in order to see an object in the back of the visualization. However, even with this use of

transparency, cone trees are still limited to visualizing data sets with a maximum size of about a couple

hundred items [12]. A cone tree is also only ideal for viewing data sets that can naturally be represented

as node trees where there are parent nodes and child nodes. Although we might be able to represent a

directory structure as a cone tree, we reject the cone tree approach because of its inability to work with

a large enough data set.

Hyperbolic Browser:

 A hyperbolic browser lays out data along a hyperbolic plane [7], which is a curved three-dimensional

surface, such as the sides of a cone or a section of the surface of a sphere. Because the area of the

hyperbolic plane naturally expands as one moves away from the center, projecting data sets onto this

plain is ideal for those data sets that naturally expand, like out directory-tree structure that tends to

expand into more child directories as one traverses further away from the root directory.

Unfortunately, our data set is not a traditional directory-tree structure in that it includes information

about how the directory-tree has changed-over-time. Our need to logically associate directories from

the same time-period makes the scattering of data effect caused by the hyperbolic browser to be

unsuitable for our needs.

Treemaps:

 Treemaps are extremely powerful because they make use of all of the available screen real estate.

Their natural application domain is hierarchical data that is arranged in trees [1], much like our

directory-tree structure data. The treemap itself is a visualization that divides the available screen real

estate into sections whose surface areas are proportionate to the amount of data that each data point

represents. This space-saving approach leads to an efficiency that has allowed over a million data points

to be represented by a single treemap. Although the nodes within hierarchical data are easily displayed,

the actual structure of the hierarchical data is obscured. Thus, treemaps are not suitable for our

problem domain which requires the expression of hierarchical data. The visual scattering effect caused

by a traditional treemap implementation also makes them inappropriate for trying to logically associate

all directories from a common time period.

8

 3.2 Fisheye View:

In a fisheye view, nearby items are presented with great detail whereas items that are further away

are presented with less detail [2]. This approach supports visualizing local detail within a global context.

This approach is also a natural approach for displaying hierarchical file systems [2]. Although some have

cited instances in which a fisheye view has lead to a distortion [5][12], in the original design, distortion is

avoided by allowing data to be either completely present or completely absent [12]. Because a fisheye

view 1) does not distort data, 2) works well with hierarchical data, 3) expresses both content and

context information, and 4) can be applied to large data sets, it is an appropriate approach to apply to

our problem domain.

3.3 Applying a Fisheye View to a set of Segmented Box and Whiskers:

 There are two ways to apply a fisheye view to a set of segmented box and whisker icons. One way

is to reduce the height of the segmented box and whisker so that it requires less space along the Y-

coordinate plane. This is similar to non-linear magnification [6]. By only reducing the height of a

segmented box and whisker, segments from the same time period remain aligned vertically which allows

for their logical association by the viewer. The other way to apply a fisheye view is to remove the entire

segmented box and whisker completely. This approach is in agreement with the original fisheye view in

which data can be completely absent [12]. We propose using both approaches.

 The method by which we choose to represent a data point is provided by a thresholding algorithm

[8]. Thresholding involves the assignment of a threshold value to data points that reflect their relevance,

or as some call it, their degree of interest [2] or visual worth [12]. This threshold value is then used to

determine if a data point is represented in great detail, less detail, or is hidden through selective

omission [9]. Our novel contribution to this problem domain is the recognition of the natural

thresholding value that is implied within a directory-tree structure. We have identified four (4) rules for

assigning threshold value relevance; 1) directories that are located within a directories file-system path

are the most relevant, 2) directories that add to an understanding of the global context are the second

most relevant, 3) directories that add to an understanding of the local context are the third most

relevant, and 4) all other directories are less relevant.

 To illustrate our thresholding algorithm, we present the following hypothetical situation (Figure 2).

Suppose someone has created a directory (named MySecretDirectory) for hiding files, and this directory

is located at /Program Files/Microsoft Office/Office12/MySecretDirectory. According to our first rule,

this directory information is the most relevant and it must be included in the visualization. Figure 2

shows the “Program Files,” “Microsoft Office,” “Office12”, and “MySecretDirectory” directories are all

displayed in fulfillment of rule 1. Our second rule requires us to display directories that add an

understanding of the global context. We contend that the directories that provide the most global

context are those that are closest to the root, while also offering a general understanding of the entire

directory tree. The directories within Figure 2 that accomplish this are the “$Recycle.Bin,” “Boot,”

“Documents and Settings,” “MSOCache,”, “PerfLogs,” “ProgramData,” “System Volume Information,”

“Users,” and “Windows” directories. Our third rule requires us to add directories that contribute to the

understanding of the local context. We have accomplished this in Figure 2 by adding the directories that

9

are the siblings of “MySecretDirectory.” These directories are expressed as segmented box and whisker

icons that have been reduced in height and their names have been hidden. This allows the sibling

directories to add local context without obscuring an understanding of the directory at the focal point,

“MySecretDirectory”. The remaining directories from out original set of 700,000 directories are hidden

completely because they do not add to the global or local context.

 We recognize that the needs of the user cannot be known ahead of time. Therefore, it is not

possible to hard-code the thresholding algorithm nor assign specific thresholding values to individual

directories. We propose the use of sliders to allow the user to increase or decrease thresholding values

so that the viewer can adjust the visualization to best suits their needs. A user will be able to increase

the amount of global context that is expressed in order to support a general search, or increase the

amount of local context to support a focused examination.

 Figure 2 shows blue triangles which we call expansion markers. These triangles point below a

segmented box and whisker icon if the corresponding directory can be expanded to expose child

directories. These expansion markers are necessary to help the viewer understand where there is

hidden data. In areas where a triangle expansion marker does not fit, we propose the use of a blue hash

mark (—).

 Figure 2 also shows a green rectangle called a focal box, which helps the viewer keep track of the

focal point. This approach is more desirable than placing a reference mark in the margin [6], which can

draw the viewer’s attention away from the data being viewed. Adjusting the focal box by scrolling

through the data can cause the viewer discomfort or disorientation [8][1] because the visualization can

appear to flash, shake, or jump-around slightly, much like how a video camera can produce a distorted

picture when panned at high speed [8]. We contend that we can minimize the distortion caused by

scrolling by minimizing the amount of re-drawing, which we control trough the thresholding algorithm.

Figure 2

10

4. Future Work:

We have developed an application for extracting information regarding the changes to a directory-

tree structure. We have used this information to print segmented box and whisker icons for all of the

directories in our data set. Because of the enormous size of this data set, our current visualization

scrolls off the computer screen, which is the primary problem that needs to be addressed.

Our future work includes implementing the thresholding algorithm. We will implement the

algorithm to allow the user to use sliders to adjust the relevance values of the directories being

displayed. We will implement the expansion markers and the focal box. We will fine-tune the

thresholding algorithm so as to minimize the distortion that might be caused by scrolling.

Once our visualization approach is implemented, we will conduct human-computer interaction

experiments to determine the strength and weaknesses of the visualization when used by real human

subjects. We will attempt to measure the ease at which people can use the tool. We will evaluate

different color choices and sizes for the segmented box and whisker. We will evaluate if our

visualization leads to 1) faster analysis, 2) better comprehension, and 3) the discovery of new

relationships.

After we have developed a technique for visualizing change-over-time for a directory-tree structure,

we will investigate visualizing change-over-time for directory content and change-over-time for file

attributes. Our final goal will be to develop a way to visualize change to 1) directory structure, 2)

directory content, and 3) file attributes, all in one visualization. We expect our challenge will be to blend

the three visualization techniques into one such that they do not compete with each other.

5. Conclusion:

We proposed a data visualization technique that supports the examiner’s understanding of how

digital evidence has changed-over-time. By understanding how digital evidence has changed-over-time,

digital forensic examiners are better able to explain “what happened.”

We developed what we call a segmented box and whisker visualization icon and explain how it can

be applied in a fisheye view, which allows the viewer to comprehend the content and context of a

directory structure that has changed-over-time. We explored well known content+context visualization

techniques and explained why a fisheye view is the best choice for displaying directory-structure

information. We developed a theoretical thresholding algorithm which reduces the problem set by

hiding less important data. We provided a theoretical solution for dealing with scrolling issues and

issues related to maintaining the focal point. We conclude that we have developed a theoretical data

visualization technique which enhances the examiner’s ability to explain “what happened”, which is the

primary goal of every digital forensic examination.

11

References:

[1] Ball, Thomas, and Eick, Stephen. Software Visualization in the Large. Computer, Apr 1996, Volume:

29 Issue: 4, pages 33 – 43.

[2] Furnas, George W. Generalized Fisheye Views. Human Factors in Computing Systems CHI ’86

Conference Proceedings, 16-23, 1986.

[3] Furnas, G.W. and Bederson, B.B. Space-Scale Diagrams: Understanding Multiscale Interfaces. In

 Proceedings of CHI. 1995, 234-241.

[4] Keahey, T. Alan. The Generalized Detail-in-Context Problem. Proceedings of the 1998 IEEE

 Symposium on Information Visualization (1998).

[5] Keahey, T. Alan and Robertson, Edward L. Techniques for Non-Linear Magnification

Transformations. In Proceedings of the IEEE Symposium on Information Visualization, IEEE

Visualization, pages 38-45, October 1996.

[6] Keahey, T. Alan, and Marley, Julianne. Viewing Text with Non-linear Magnification: An experimental

 Study. Technical Report 459, Department of Computer Science, Indiana University, April 1996.

[7] Lamping, John, Rao, Ramana, and Pirolli, Peter. A Focus+Context Technique Based on Hyperbolic

 Geometry for Visualizing Large Hierarchies. In Proc. ACM Conf. Human Factors in Computing

 Systems, CHI (1995), pp. 401-408.

[8] Leung, Y.K. and Aerley, M. D. Aerley. A Review and Taxonomy of Distortion-oriented Presentation

Techniques. ACM Transactions on Computer-Human Interaction, Vol. 1, No. 2. (1994), pp. 126-160.

[9] Mackinlay, J. D., Robertson, G. G., and Card, S. K. The Perspective Wall: Detail and Context

Smoothly Integrated. Proceedings of the ACM Conference on Human Factors in Computing Systems

(CHI '91); 1991 April 27 - May 2, 173-179.

[10] Munzner, Tamara, and Burchard, Paul. Visualizing the Structure of the World Wide Web in 3D

Hyperbolic Space. Proceedings of VRML '95, (San Diego, California, December 14-15, 1995), special

issue of Computer Graphics, ACM SIGGRAPH, New York, 1995, pp. 33-38.

[11] Robertson, Georeg G. and Mackinlay, Jock D. The Document Lens. In UIST '93: Proceedings of the

6th annual ACM symposium on User interface software and technology (1993), pp. 101-108.

[12] Sarkar, Manojit and Brown, Marc. Graphical Fisheye Views. Communications of the ACM.

 Volume 37 Issue 12, Dec. 1994.

12

[13] Ware, Colin. Information Visualization, Perception for Design (Second Edition). Elsevier, San

Francisco, CA (2004). ISBN 978-1-55860-819-1.

